A counting quantifier is a mathematical term for a quantifier of the form "there exists at least k elements that satisfy property X". In first-order logic with equality, counting quantifiers can be defined in terms of ordinary quantifiers, so in this context they are a notational shorthand. However, they are interesting in the context of logics such as two-variable logic with counting that restrict the number of variables in formulas. Also, generalized counting quantifiers that say "there exists infinitely many" are not expressible using a finite number of formulas in first-order logic.